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Abstract. For the two approximations &mmonly used in the Davydov soliton h r y  ( d e d  
10,) and 19) ansufz). expressions for smes which give the deviation of the approximation 
h m  the SchrWinger equation, i.e. [ih(a/af) - H ] l D l )  = JlS). can be derived. We present 
numerically cslculated expenation values of various operators formed with deviation states 
and compare them with Ur wmponding expectation values formed with HIDi). Togeuler 
with the fact that the basis space of he ID[) slate is sufftcient Lo reproduce Ur exaaty solvable 
small-polaron limit. we conclude h m  our m u l m  that the ID,) mcdd should be an at least 
qualitatively alrrecf approximation. 

1. Introduction 

The basic concepts of the Davydov soliton mechanism for energy transport in proteins [ 1-41. 
as well as the different attempts to include the effects of finite temperature into the model 
13-12] and the controversy about thermal stability of protein solitons has been discussed in 
the introduction of part II [5 ]  of this series. Therefore we do not wish to elaborate these 
points here. The extensive discussion on the validity of the different unsatz states used in 
the 1iteraNIV [13-22] is also reviewed there [5]. A recent review of the state of art in the 
Davydov soliton theory was given by Scott 1231. 

This series of papers deals mainly with m o r z  states which include in the theory the 
quantum effects on the lattice and the effects of finite temperature. In part I [I91 we applied 
Davydov’s averaged Hamiltonian method to the so-called ID,) ansuh state [2] using the 
Lagrangian method advocated by Skrinjar et ai [ 161 to obtain equations of motion which 
improve considerably the quality of the results compared with Davydov’s method of using 
the averaged Hamiltonian as a classical Hamiltonian function [2,14]. That is. in contrast 
with the previously derived equations [2.14], the exactly solvable small-polaron limit of the 
theory can be reproduced with the help of these equations [16]. In [19] we demonstrated 
numerically thas at 300 K and for reasonable values of the parameters, travelling solitons 
show up in the model. Since Davydov’s concept of using a thermally averaged Hamiltonian 
(in our case a thermally averaged Lagrangian) to obtain equations of motion was criticized as 
being inconsistent with statistical mechanics [U], we compared the results of several models 
which include the temperature in the theory with exact numerical results from quantum 
Monte Carlo (QMC) calculations by Wang et ai I201 in pari II [SI of this series. We found 
that only the averaged Hamiltonian method leads to qualitatively c o m t  results, although 
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it is quantitatively incorrect Also in this paper we presented for the first time dynamic 
simulations employing the partial dressing state used by Brown and Ivic [22] at finite 
temperatures. However, this model does not reproduce the QMC results even quantitatively. 

Therefore, in part III [2S], we used the averaged Hamiltonian method to study the 
effects of interchain coupling present in protein a-helices at finite. temperatures, following 
the suggestion of Scott that this coupling should stabilize the solitons compared with the 
one-chain case. We found that the soliton stability windows in the parameter space at 300 K 
for the one-chain and the three-chain cases are very similar to each other and that solitons 
should exist at 300 K for reasonable values of the parameters also in the threechain case. 

In an attempt to find a better model for temperature effects in the 101) amafz we 
presented in part TV [26], soliton dynamics using a lattice with a thermal phonon population 
instead of an averaged Hamiltonian. However, comparison with the QMC results showed 
that the averaged Hamiltonian method is also superior to this model. Since at 0 K the 101) 
amarz is st i l l  an approximation, it would be helpful to have a numerical estimate of the errors 
introduced by this approximate amatz. Therefore we present in this paper the expectation 
values of several operators in the state IS) which represents the error of the ID]) state if it 
is substituted into the time dependent S c W n g e r  equation: [ih(a/at)  - All&) = JlS). 
J is one of the parameters in the Hamiltonian (see below). For an exact solution, IS) = 0 
would be required. We compare these expectation values with the corresponding values in 
the state AlDt) to obtain a numerical estimate of the errors occurring. For comparison the 
same is done also for the semiclassical so-called 1 9 )  amah [I]. Finally in an appendix 
we give a possible way to improve the quality of the ansa& further. 

2. Method 

In order to make the notation clear we r e p t  here the form of the Hamiltonian intmduced 
by Davydov [I]: 

I? = c l E o i ? J &  - J(lj , '&+i +2:+,&) + a: + $W(&+i -&)'+ X2:&(&+( -&)I. 
n 

(1) 

In equation (1) 2; and in are the usual boson creation and annihilation operators, 
respectively, [3], for the amide-I oscillators at sites n (figure 1) .  F" infrared spectra 
the ground-state energy of an isolated amide-I oscillator can be deduced (EO = 0.205 eV). 
Usually, for all parameters in equation (1). site-independent mean values are used. The 
average value for the dipole-dipole coupling between neighbouring amide-I oscillators is 
J = 0.967 meV. The average spring constant of the hydrogen bonds is usually taken to 
be W = 13 N m-', fin is the momentum and & is the position operator for unit n. The 
average mass M is taken to be that of myosine (M = 114m,; mp is the proton mass). The 
energy of the CO stretching vibration in hydrogen bonds is a function of the length r of the 
hydrogen bond (E = EO + Xr). For X the experimental estimates are 35 pN and 62 pN. 
Ab-inifia calculations on formamide dimers usually lead to X = 30-50 p N  however, with 
small-basis-set ab-initio calculations, even negative values were obtained for X (see, e.g. 
[221 for a review and references). 

The Hamiltonian [ I ,  21 in a second-quantized form including disorder is given by 
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& and & are creation and annihilation operators, respectively, for acoustic phonons of 
wave number k. The translational mode has to be excluded from the summation. Note that, 
in the simulations presented, we again use the asymmetric interaction model where only 
the coupling of the oscillator n to the hydrogen bond between n and n + 1 in which the 
oscillator takes part is considered. U& denotes the eigenfrequency of the normal mode k and 
U contains the normal mode coefficients. o and U are obtained by numerical diagonalization 
of the matrix V with the elements 

V", = ( [WdI  - 8" + Wfl-I(l - snI)I8"m - W"(1 - sn#)~,.+I 

- Wn-1(1 - s ~ l ) s ~ , " - l ) ( ~ " ~ ~ ) - l ' z .  (3) 

The form of V implies that we use free chain ends and N units. 

n - l  n n + l  

Figure I. Schematic piclure of a hydrogen-bonded channel in a protein 

The 101) msntz state on which most of' the work reported in this series of papers is 
based is (IO), denotes the phonon vacuum, and IO). the exciton vacuum) 

where the b.&) are the coherent-state amplitudes and Ic(t)12 is the probability of finding 
a quantum of the amide-I vibration at site n. The equations of motion derived from this 
ansatz with the help of the Euler-Lagrange method, time-dependent variational principle 
or Heisenberg's operator method are given (for T = 0 K) in [I61 and the preceding papers 
of this series, so we shall not repeat them here. It was shown by Slainjar er nl [ 161 that, 
from these equations, one can derive that 
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By separate evaluation of 

ifi(a/ar)iDI) and Aiel) (7) 

and with the help of the equations of motion it can be easily shown that if one sets 

(8) 
x = 1 yn = 4..+lan+I - D n , , d n - 1  
%k = an+l (bn+l*k  - b n x ) D m , n + l  +a.-tfb.- l . t  - b n k ) D n . n - i  

Ix)  = IS) holds. Further if we set 

%k = - h ( B n k  f b n k b n f  J 

I x )  = ( d / J ) l D l )  is obtained where the overlaps of the Glauber coherents phonon states 
are given by 

4m=((BnISm)=exP - f x ( h k - b m k l ' f b ; , b n k  - b m k b i k )  . (10) 

Further one can easily show that the e m  IS) is orthogonal to 101). that the energy 
expectation value for IDl) is equal to the exact energy of the system and finally that 

( k  ) 

( ~ ~ i i f i a / a t  -Aiol) = o  (11) 

holds [16]. 
In this work we shall calculate the expectation values 

( x l x )  ( x l i ~ & t k )  ( X l i k l X )  ( X l 6 n l x )  ( x l & k )  (12) 

and compare their numerical values for (B /J ) IDl )  and the error IS) to obtain a feeling of 
the errors introduced by the approximate nature of the 101) ansatz. Note that, in contrast 
with the usually applied procedure, we do not eliminate terms in the equations of motion 
which are products of a site-independent constant multiplied by an as a phase factor at the 
a-values. In appendix I we give some commutation relations and expectation values of 
various operators which are necessary to derive the expressions for the values listed above. 

First of all we shall compute projections of the state Ix)  on our non-orthogonal basis 
states: 

t - -+ In ) =a,, lo)el(Bntl) In) =i:lo)eh%) In-) =i:lo)el(Bn-~) 
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The norm of our state can be computed using the expectation values given in appendix 1: 

A numerical comparison of the norm of our two states will give us an idea of how important 
the error made by the ansuiz in comparison with ( A / J ) l D l )  will be. Further we are 
interested in the expectation value of the number operator for the amide-I oscillators in the 
two states under investigation. This value can be computed with the formula 

( X l ~ ~ & l X )  = X ~ ; + I  X%+i - YnDn+i .n  - an-i&+i,n-i - c M b i + I + l s  - b i k ) D n + ~ . n  ) 

) 

( k 

- Y i ( X a n t l D n . n + I  - ~n - a n - 1 4 . n - 1 )  

-an-[ Xan+ i&- i . n t i  - YnDn- i .n  -%-I - z % k ( b ; * _ l , k  - b i k ) D n - l . n  

- z a : k b n + l ( h + l . k  - b n k ) D n . r + l  -4 t -1(bn- f .k  - bnx)Dn.n-l  -%k l .  

* (  k 

k 

(16) 

By rearranging the different terms, one can easily show that this expectation value is a real 
quantity as one expects. The numerical evaluation of this expectation value gives an idea 
of how large the errors in lan(t)lz when calculated with the IDl)  approximation might be. 
The expectation values of the phonon annihilation operators are given by 

( X l & X )  = ( * a : + I I X b n t l . r a m t i  - b.t&+i,,y, - b n - ~ , & + ~ , n - ~ a n - ~  " 
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To check our formula for emrs  we derived independently the corresponding expression for 
the expectation values of the phonon creation operators and verified that 

(Xl6kIX) = ((xl6:lx))* (18) 

holds. 
displacement operators in our states: 

From this we can finally compute the expectation values of momentum and 

For comparison we give in appendix 2 the corresponding expressions for the simpler 19) 
approximation, in which the lattice is treated classically. In section 3 we discuss numerical 
applications of these results. 

3. Results and discussion 

3.1. The 101) approximation 

We have calculated numerically the above-derived expectation values and projections for 
four pairs of ( X .  W )  values, namely ( X  = 50 pN, W = 10 N m-l), ( X  = 150 pN, 
W = IO N m-'), (X = 50 pN, W = 50 N m-I) and (X = 150 pN, W = 50 N d). 
Since the numerical results were in all cases essentially similar, conceming the comparison 
between expectation values in the state (I?/J)IDI) and the deviation IS), we concentrate the 
discussion on one of the parameter values. We have chosen X = 150 pN and W = 10 N m-' 
since in this case a travelling soliton is present in the system which starts to disperse after 
reflection at the chain end, as figure 2 shows, where we present the time evolution of 
lan(f)l*, the lattice displacements &(I) and the lattice momenta pn(f). 

F@re 2. Dynamics of a chain of Z units afk~ an 
initialone-siteexcitationatsite24usingthe 101) a ~ a l z  
sfate. The following quantities are shown as functions 
of time 1 and site n (time step I fs: m in total energy 
less than 30 p e t  nom error less than 4 ppb): ( a )  
lun(t)lZ: (b) p.(t) (eV PS A-'): (c) ~ ( i )  (A). 
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F g r e  3. lime evolution of (a) the nmm N of the state ( k / J ) l D t )  ( N I )  and (6) the nom of 
the deviation IS )  (NI). 

Figures 3(a) and 3(b) show the norm NI of the state ( A / J ) ( D t )  and the norm NZ of 
the deviation IS), respectively. It is clear from the figure that the norm of the deviation 
is completely negligible, being five orders of magnitude smaller than that of ( f? /J ) l fh ) .  
Also the norm of the deviation shows no tendency to increase with time but has a strongly 
oscillatory character. Figure 4 shows the expectation values discussed above for the two 
states. Figure 4(a) shows the expectation values of the number operators for the amide- 
I oscillators as functions of site and time. Also here the values for the deviation are 
negligible compared with those for (fi/J)lD,). In this case they are roughly four orders of 
magnitude smaller. Both expectation values have the same form as the time evolution of the 
expectation values of the number operators in the 101) state itself. The same observation 
holds for the expectation values of the phonon annihilation operators (real part in figure 4(b), 
and imaginary part in figure 4(c)). However, in this case the difference is even larger. 
namely five orders of magnitude, In the case of the expectation value of the momentum 
operators the difference is again smaller by four orders of magnimde (figure 4(d)), and 
for the displacement operators (figure ye ) )  by five orders of magnitude. Thus it seems 
that the deviations of the 101) state which result from exact solution of the time-dependent 
Schriidinger equation are in terms of the expectation values of the different relevant operatm 
in the two states on the right-hand side of 

i ( h / J ) ( V f ) I 4 )  = (d/J) lW + IS) (20) 

not large and are in fact negligible, being for IS) four to five orders of magnitude smaller 
than for the state ( f i / J ) l D f ) .  Although this is not a direct measure of the errors introduced 
into the corresponding expectation values of the wavefunction itself, it gives at least some 
confidence in the numerical results of 101) dynamics. Note that the absolute values of the 
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expectation values formed with the deviation state can be obtained by multiplication by 
J z  = 9.35 x IO-’ eV2, since the deviation from the Schriidinger equation is J l S ) .  In our 
calculations we have used 18) and ( i ? / J ) [ D I )  in order to obtain dimensionless states. 

Now we tum to the projections of the two states on the right-hand side of equation (20) 
on the different basis states in their expansions. It is easy to verify that (nlS) = 0 holds; thus 
it is also not necessary to discuss ( n l ( f i / J ) l D l ) ,  since our state is exact in this direction. 
For completeness we show the real and imaginary parts of (nI(fi/J)IDl) in figure 5(a). In 
figures 5(b) and 5(c) we show the real and imaginary parts, respectively, of the projections 
of our two states on In-). We recognize immediately that in these directions the deviation 
is two orders of magnitude smaller than the amplitudes of ( i? /J) lD1) .  The situations for 
the projections in the Ini) direction are very similar, as figures 5(d) and 5(e) show. One 
sees that, while (n*l(H/J)ID,)  is large when the amide-I excitation probability is large, 
the deviation spreads over the whole chain, however, being also more pronounced at the 
amide-I excitation sites. We give only two examples of the huge amount of data for the 
projections on the In, k )  basis states. In figure 5 ( f )  we show the real part of the projection 
in the direction In, I )  where k = 1 denotes the lowest non-zero phonon frequency. We 
see that in this case the deviation can be even twice the projection of (!?/J)lDl) in this 
direction. However, in absolute values both conhibutions are three orders of magnitude 
smaller than those of the previously discussed directions and thus entirely negligible. For 
all higher phonon frequencies the emrs  are typically smaller by factors between 2 and IO 
than the projections of ( f i / J ) I D l ) :  however, also there the latter are small enough to be 
negligible. As an example we show the real part of the projections in the In, 5 )  direction 
in figure 5(g). Thus altogether it seems that the deviation of the IDl)-state solutions fulfil 
the timedependent Schrijdinger equation to quite good accuracy. In directions where the 
deviations are relatively large the whole contribution is negligibly small compared with 
the contributions in other directions. Also here the projections have to be multiplied by 
J = 9.67 x IO4 eV, since the deviation from the Schrijdinger equation is J [ S ) .  Further the 
deviation evolves proportional to J from the small-polaron limit ( J  = 0) where the IDl) 
matz  gives the exact solution. 

3.2. The 102) approximation 

The equations of motion as well as the necessary expectation values for the error are 
derived in appendix 2. An interesting and, to our knowledge, never reported feature of the 
1 9 )  model is the extreme dependence of the soliton stability on the boundary conditions. 
If one uses free chain ends instead of the commonly applied fixed (i.e. a,, aN1 91. 9 N ,  
pi and PN are not allowed to change during the simulation) or cyclic ends, the soliton 
stability window concerning the parameter X is drastically reduced, as figure 6 shows. 
While travelling solitons appear roughly between X = 30 pN and X = 80 pN for a fixed 
boundary, travelling solitons show up only from X = 60 pN for the free boundary (with 
W = 10 N m-I) and already from X = 80 pN the excitation becomes pinned at the chain 
end. 

Since in the case of the IDz) state the basis space is smaller than for the IDl) state, 
one would expect the deviations from the SchrMinger equation to be larger. However, 
also here this deviation is minimized by the time-dependent variational principle, which 
is completely equivalent to the Lagrangian method used in appendix 2 for derivation of 
the equations of motion. Therefore the difference between the expectation values of the 
operators in the states (i?/J)IDz) and IA) (see appendix 2) is indeed mostly smaller than 
in the states (A/J) lDi)  and IS). but it is not as pronounced as one would expect. Also 
the expectation values formed with IA) are themselves larger than those discussed above, 
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Figure A Expectation values of several opmlors in the state ( f i / J ) l D t )  (denoted by D) and 
in the deviation IS) (denoted by E): (a) number o p t o r s  Af(1)  and AF(1) for Ur amide- 
I oscillators as functions of site n and time I: ( b )  phonon annihilation operators (real pans 
BF(r) and B:(t)) as functions of wavenumber k and time 1; (e) phonon annihilation operators 
(imaginary p m  Cf(r )  and C:(r)) as functions of wavenumber k and time 1: ( d )  momemum 
operators &'U) and $U) as functions of site n and timer: (e) displacement opemors qR(1) 
and qF(r)  as functions of site n and time 1. 
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Figure 5. (Continued) 

l * " l t l l ~  

Figure 6. Time evolution of lo.(r)12 as a function of 

but the difference is not tremendous (see below). One recognizes two differences between 
101) and 14) immediately from the expressions in appendix 2. First of all the deviation 
state for the IDz) model is not proportional to J ,  as it is in the ID1) case. and thus 14) 
is not exact in the small-polaron limit ( J  = 0). Further the projection in the direction 
In) = i~10)el,6) vanishes as in the 101) case but the additional deviations in the directions 
In*) = if i lO)el@.*~) naturally cannot occur in IDz) theory because such basis states are not 
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Figure 7. Time evolution of (a )  the n o m  NI of the state (H/J ) I&)  and ( b )  the norm Nz of 
the deviation IA). The parameters are W = 13 N n i l ,  and X = 62 pN. 

present there. 
In figure 7 we show for the ID*) states the norms (Dzl(fi/J)IDz) and (AlA) for the 

usually used parameter values W = 13 N m-' and X = 62 pN and free-boundary conditions. 
From the figure we see that the two curves are nearly parallel and that the norm of the 
deviation is larger by a factor of about 3 than in the 101). case. While the norm of 
( A / J ) ~ D ~ )  spreads over a region of 110, the norm of ( I ? / J ) I D ~ )  spreads over a region 
of roughly 5. This means that in the latter case the variation in the norm with time is 
completely govemed by the time variation in the deviation which is by far not the case for 
the IDl) state. Therefore already from these norms we can deduce that the time variation 
in ID,) is much more acculate than that of 14). 

In figure 8(u) we show the expectation values of the number operatom of the amide-I 
oscillators in our two states. Although the deviation is somewhat larger than in the 1/31)  
case, this difference is not significant. This result is to be expected, because the deviation 
state in the 1 0 2 )  case has no coefficients on the basis states In). For the momentum operators 
(figure 8(b)) the deviations are larger by a factor of 2 than in the 101) model, while in the 
case of the displacement operators they are of the same order of magnitude, but here the 
expectation values of the operators formed with the ( f i / J ) l D z )  state are much smaller 
than those formed with the ( f i / J ) l D l )  state and thus the errors in the 1 0 2 )  case are more 
significant, although still small. The reason that the deviations in the 1 4 )  model are also 
small is that they are minimized by the time-dependent variational principle also in this 
case. However, this must lead to results which differ from those of ID1), because in the 
( 0 2 )  case the basis space is much smaller. 
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& t i  

Figure 8. Expectation values of several operaton in lhe state ( f i / J ) l & )  (denoted by D). and in 
lhe deviation IA) (denoted by E), computed in the 1 9 )  model (W = 13 N m-'; X = 62 pN): (U) 
number operaton A;(r)  and A:(I) for the amide-I oscillators as functions of site n and time I; 
(b) momentum operaton &I) and $ ( I )  as funclions of site n and time I ;  (c) displacement 
operaion *:(I) and q f u )  as functions of site n and time I. 

4. Conclusion 

We have numerically determined different expectation values formed with the ( 6 I J ) l D d  
state and 16). which is the deviation from the exact solution of the time-dependent 
Schriidinger equation, i.e. for our approximation [ i ( a / a t )  - f?]lD,) = J l S )  holds. We 
found that, for all the expectation values that we computed, including the norm of the 
two states, those formed with IS) are completely negligible compared with those formed 
with ( H / J ) I D l ) .  Although this is not a direct measure of the corresponding mor3 in 
the expectation values of operators formed with the ID,) state, it gives at least an idea 
of the importance of the deviation. Thus we conclude that the IDl) unsatz should give a 
relatively good approximation to the exact solutions, specifically since it is the exact solution 
in the small polaron limit ( J  = 0). This is not the case for the ID*) ansafz, although the 
corresponding deviation there also results in rather small expectation values. Therefore 
it is clear that the basis space in the 19) case is too limited and one has to conclude 
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that here the time-dependent variational principle must result in solutions which are even 
qualitatively different from the exact solutions in order to minimize the deviation, since the 
small-polaron limit is also not reproduced. On the other hand the extended basis space of the 
IDl) state is sufficient to reproduce the small-polamn limif which leads to the conclusion 
that solutions other than J = 0 have to be at least qualitatively correct. This conclusion is 
supported by the numerical results from the deviation state in this case. Further the error 
evolves proportional to J from the exact small-polaron case and the actual value of J is 
small (0.967 meV). Also projections of the deviation in the directions of the basis states 
are negligible for all basis states which have a large contribution in ( f i / J ) l D ~ ) ,  while only 
for basis states which are already negligible in ( f i / J ) l D l )  is the error comparable with the 
contribution in ( f i / J ) I & ) .  

However, it is desirable to have a better unsutz state than 101). Comparison of the 
results obtained with such a state with 101) results would give final justification for the use 
of the 101) approximation. In appendix 3, on the basis of the considerations of Mechtly and 
Shaw [IS], we outline a strategy of how one can obtain such an improved am&. Work 
along this line is in progress in our laboratory. 

Acknowledgments 

The financial support of the Deutsche Forschungsgemeinschaff (project Fo 175/2-3) and of 
the Fonds der Chemischen Industrie is gratefully acknowledged. 

Appendix 1. Commutation relations and expectation values 

The well known commutation relations for boson operators are ..- 
bkbi = 6 $ 6 k  + 6x1.. 

From this, one can easily show by complete induction that 

(Al.1) 

(A1.2) 

Further we have for the displacement operatots 

c i , k  = eXp(b,k&: - hik&) = eXp(-fib,xl')eXp(b.r~:) eXp(-b;kbk). 

As an example of how to proceed we compute two of the necessary commutators: 

(A1.3) 
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Thus we obtain finally that 
i k f i n  f i n ( 6 k  + bnk) .  

(A1.6) 

(A1.7) 
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Appendix 2. Expressions for the 14) approximation 

For comparison we wish to derive the error in the simpler [Dz)  unsutz, in which the lattice 
is described classically. The unsufz is given by 

1 9 )  = ~ U , ( f ) i , + l O ) , l S )  
n 

(A2.1) 
IS) = 010)~ = exP ( c [ b k V ) b :  -bi(&kl) 10)~. 

k 

We see that here the manifold of basis states IS.) for the description of the lattice 
displacements is reduced to a single basis state IS). With a straightforwad derivation 
we obtain 

Lt = iiht(&l(a/at)&) - (@/at)&l&)l 

- lib[ e(b& -U& + la,lz x ( & b ;  - bk6;)]. W . 2 )  
- 2  " ( n  ) k  

Together with the expectation value of the Hamiltonian this gives the Lagrange function 

L =  Lt-(DzIHlD2)= fihc(bnu,'-u.b;)+ ~ i h ~ ~ ~ ~ ~ ~ ( & b ~ - b & )  
n nk 

(A2.3) 

The Euler-Lagmge equations for U. lead to 

From this, one can show that the norm is conserved, i.e. 

With (A2.5) and the Euler-Lagrange equations for the b-values we obtain the equations of 
motion 

which can be shown to be equivalent to the more familiar equations 

P" = w(q"tl - 2% + qn-I) + X(lU.lZ - lU,-IIZ). (A2.7) 

This leads to the final equations for the U-values: 

(A2.8) 
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equivalent to 

(A2.10) 

this can be transformed into the familiar form 

= -J (An+t  +&-I)  + X b + i  - q&h. (A21 1) 

Note that, with Davydov's method for the derivation of the equations of motion (treating 
(DzlfilD~) as the classical Hamiltonian function), equation (A2.11) is obtained; however, 
the second term in-the phase in equation (A2.10) is missing. Now again we can compute 
ifi(a/lJt)lDz) and HID2)  separately and we obtain 

*(alat)lDd = J I ( H / J ) I D z )  + lA)l .  (A2.12) 

(A2. 14) 

and further Ix) = ( f ? / J ) l & )  if we set 

ffnk = ( f i W k / J ) ( b k  f Bnk)an. 

The projections on the basis states are, because of their orthogonality in this case, simply 

(nix) = Yn (n.klx) = (*nk (A2.16) 
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and our expectation values are 

Appendiv 3. Improved a n s o h  including two-phonon terms 

Mechtly and Shaw [15] have shown that the exact soIution I+(t)) of the Schrijdinger 
equation can be written in the form 

IW)) = Can(t)~i~~).%~~)p (A3.1) 
n 

where 
.. W. =exPS,. (A3.2) 

The anti-Hermitian generator in can be expanded into an infinite series of normal ordered 
products of arbitrary numbers of phonon creation and annihilation operators multiplied by 
timedependent coefficients: 

We see that a truncation of the series after the first term leads to the 101) state. In this first 
term it is taken into account that an amide-I excitation at unit n can create or annihilate 
a phonon of the normal mode k. However, the normal modes remain uucoupled since 
only one-phonon processes are included. In the second sum it is taken into account that 
a phonon with wavenumber k' can be annihilated by the creation of another phonon with 
wavenumber k, while the third sum describes the simultaneous creation or annihilation of 
two phonons with wavenumber k and k'. The higher-order terms then include three-phonon 
processes, four-phonon processes, and so on. The convergence of the series can probably 
he investigated only numerically. 

In a first attempt to study this convergence and to improve the quality of the ansak 
beyond 10,) we are planning to take the two two-phonon processes into account. For this 
purpose we have to derive the Lagrangian 

a- 
L = (+(t)l@, - AI+W (A3.4) 
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from which with the help of the Euler-Lagrange equations 

(didr)(aLia+;,;) - aLiav; = o vfi =a,, bnk? f*r,. or 8kV.n (A3.5) 

the ZN3 + N2 + N complex equations of motion can be obtained and solved numerically. 
Work along this line is in progress in our laboratory and the results will be the subject of a 
future paper. 

However, one should also still seek temperature models which lead to quantitatively 
more reliable results than the average Hamiltonian model, although the latter model is 
qualitatively correct [5]. For this purpose, one could start with the usual initial state 

where v denotes one of the possible phonon distributions in the lattice. Then at time t the 
exact state is given by 

t+"(r)) = exp[-(i/h)fit~~+~(r = W. (A3.7) 

The expectation value of an operator A, where in our case the exciton number operators and 
phonon and exciton annihilation operators are of interest, computed for our state is given 

A&) = Wdt)l~l+df)) = (?Mt = 0)l exp[(i/h)kr]A^ e~p[(-i/h)fir]l+~(t = 0)). (A3.8) 

A thermal average finally gives the expectation value at time t and temperature T: 

as 

where 2, is the phonon part of the Davydov Hamiltonian. Expansion of the exponentials 
results in the final equation 

Thus one has to compute commutators of the kind 

[A, ril [A, ri']. 

(A3. IO) 

(A3.11) 

It is hoped that a closed form for the expressions can be found or, if this is not possible, 
the expansion of the exponentials can be uuncated after a suitable number of terms. Work 
along these lines is in progress in our laboratory. 
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