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Abstract. For the two approximations commonly used in the Davydov soliton theory (called
1Dy) and (D) arsaiz), expressions for states which give the deviation of the approximation
from the Schridinger equation, ie. [ih(3/3r) — H11D0} = J|5), can be derived. We present
numerically calculated expectation values of various operators formed with the deviation states
and compare them with the comesponding expectation values formed with H|Dy). Together
with the fact that the basis space of the 1D) state is sufficient to reproduce the exactly solvable
small-pelaron limit, we conclude from our resuits that the |£%) model should be an at least
qualitatively correct approximation.

1. Introduction

The basic concepts of the Davydov soliton mechanism for energy transport in proteins [1-4],
as well as the different attempts to include the effects of finite temperature into the model
-[3~12} and the controversy about thermal stability of protein solitons has been discussed in
the introduction of part I [S] of this series. Therefore we do not wish to elaborate these
points here. The extensive discussion on the validity of the different ansatz states used in
the literature {13-22] is also reviewed there [5). A recent review of the state of art in the
Davydov soliton theory was given by Scott [23],

This series of papers deals mainly with gnsatz states which include in the theory the
quantum effects on the lattice and the effects of finite temperature. In part I [I9] we applied
Davydov’s averaged Hamiltonian method to the so-called [ D) ansatz state [2] using the
Lagrangian method advocated by Skrinjar ez af [16] to obtain equations of motion which
improve considerably the quality of the results compared with Davydov’s method of using
the averaged Hamiitonian as a classical Hamiltonian function [2, 14]. That is, in contrast
with the previously derived equations [2, 14], the exactly solvable small-polaron limit of the
theory can be reproduced with the help of these equations [16]. In [19] we demonstrated
numericaily that, at 300 K and for reasonable values of the parameters, travelling solitons
show up in the model. Since Davydov’s concept of using 2 thermally averaged Hamiltonian
(in our case a thermaliy averaged Lagrangian) to obtain equations of motion was criticized as
being inconsistent with statistical mechanics [24], we compared the results of several models
which include the temperature in the theory with exact numerical results from quantum
Monte Carlo (QMC) calculations by Wang ¢ al [20] in part I [5] of this series. We found
that only the averaged Hamiltonian method leads to qualitatively correct results, although
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it is quantitatively incorrect. Also in this paper we presented for the first time dynamic
simulations employing the partial dressing state used by Brown and Ivic [22] at finite
terperatures. However, this model does not reproduce the QMC results even quantitatively.

Therefore, in part III [25], we used the averaged Hamiltonian method to study the
effects of interchain coupling present in protein «-helices at finite temperatures, foliowing
the suggestion of Scott that this coupling should stabilize the solitons compared with the
one-chain case. We found that the soliton stability windows in the parameter space at 300 K
for the one-chain and the three-chain cases are very similar to each other and that solitons
should exist at 300 K for reasonable values of the parameters alsc in the three-chain case.

In an attempt to find a better model for temperature effects in the |Dy) ansatz we
presented in part IV [26], soliton dynamics using a lattice with a thermal phonon population
instead of an averaged Hamiltonian. However, comparison with the QMC resuits showed
that the averaged Hamiltonian method is also superior to this model. Since at 0 K the | D;)
ansarz is still an approximation, it would be helpful to have a numerical estimate of the errors
introduced by this approximate ansatz. Therefore we present in this paper the expectation
values of several operators in the state [3) which represents the error of the | Dy} state if it
is substituted into the time dependent Schridinger equation: [if(3/91) — AlID) = J|8).
J is one of the parameters in the Hamiltonian (see below). For an exact solution, {8) =
would be required. We compare these expectation values with the corresponding values in
the state 7 |D;} to obtain a numerical estimate of the errors occurring. For comparison the
same is done also for the semiclassical so-called [Ds) ansatz [1]. Finally in an appendix
we give a possible way to improve the quality of the ansatz further.

2. Method

In order to make the notation clear we repeat here the form of the Hamiltonian introduced
by Davydov [1]:

H= Z[Eaa s — J(G} a,,+:+a,,+1a,,>+2—ﬁ+ YW Gat1 — 8% + X8 BulGnst — ).

(1)

In equation (1) & and 4, are the usual boson creation and amnihilation operators,
respectively, [3], for the amide-I oscillators at sites n (figure 1). From infrared spectra
the ground-state energy of an isolated amide-I oscillator can be deduced (Eg = 0.205 eV).
Usually, for all parameters in equation (1), site-independent mean values are used. The
average value for the dipole-dipole coupling between neighbouring amide-1 oscillators is
J = 0.967 meV. The average spring constant of the hydrogen bonds is usually taken to
be W = 13 N m~!, p, is the momentum and §, is the position operator for unit n. The
average mass M is taken to be that of myosine (M = 114my; m, is the proton mass), The
energy of the CO stretching vibration in hydrogen bonds is a function of the length r of the
hydrogen bond (E = Ej 4 Xr). For X the experimental estimates are 35 pN and 62 pN.
Ab-initio calculations on formamide dimers usually lead to X = 30-50 pN; however, with
small-basis-set ab-initio calculations, even negative values were obtained for X (see, e.g.
[22] for a review and references).
The Hamiltonian [1,2] in a second-quantized form including disorder is given by

A= Z{(Eo+s,,)a+an Ju(8F, B + 8y 0)]
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Ez' and b, are creation and annihilation operators, respectively, for acoustic phonons of
wave number k. The translational mode has to be excluded from the summation, Note that,
in the simulations presented, we again use the asymmetric interaction model where only
the coupling of the oscillator » to the hydrogen bond between: # and r + 1 in which the
oscillator takes part is considered. w; denotes the eigenfrequency of the normal mode & and
U contains the normal mode coefficients. @ and U are obtained by numerical diagonalization
of the matrix V with the ¢lements

Vim = {[Wa(1 = 8xn) + Waet (1 = 801)18um — Wo(l ~ 8,n)8mnit
= Wt {1 — 821)8m,—1}(Mn M) ~'12. 3

The form of V implies that we use free chain ends and N units.

/ N\ /
----- o--c\ N=H-0=C
N—H-----0=C N—H-----
/ AN
-1 n nas+1

Figure 1. Schematic picture of a hydrogen-bonded channel in a protein.

The | D) ansetz state on which most of the work reported in this series of papers is
based is (|0}, denotes the phonon vacuum, and |0)e the exciton vacuum)

ID1) =" an(Day 10elB) 1B} = UalO)p

- . . ., . @
On=[]0n  Oum=explbu()s — B}, (1))
k

where the b (¢} are the coherent-state amplitudes and |a,{¢)|? is the probability of finding

a quantum of the amide-I vibration at site n. The equations of motion derived from this

ansatz with the help of the Euler-Lagrange method, time-dependent variational principle

or Heisenberg’s operator method are given (for T = 0 K) in [16] and the preceding papers

_ of this serjes, so we shall not repeat them here. It was shown by Skrinjar er a/ [16] that,
from these equations, one can derive that '

h(3/801 D) = JUH /1) Dy} + |8)) (5)
holds. We introduce a state

REDD (xan+1|ﬁ.,+;> = VulBa) = GumtBa-t) = D i Unbf |0>p)&:|0>c. (6)
: k

n
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By separate evaluation of
@/ o) and A|Dy) )
and with the help of the equations of moticn it can be easily shown that if one sets
x=1 ¥n = Drni18ni1 — Dna—i@n-1 @)
Onk = G i (Bry1 .k — bnt) Dnng1 + 8p1(Bn—14 — bri) D1
|x} = |8} holds. Further if we set

a
x=-1 Y = —(Zﬁwk[]bnklz + 3+ Buy(ba + b)) + EO) ‘f‘ )
X

Ong = —Fwp(Buy + bpg)an/J

Ix) = (H [ DDy is obtained where the overlaps of the Glauber coherents phonon states
are given by

Do = {Bn|Bm) = exp ( - ‘%Z(lbn - bmk|2 +b::kbnt - bmkb:k))' 4 L]
k
Further one can easily show that the error |8) is orthogonal to [Dy), that the energy
expectation valoe for {0} is equal to the exact energy of the system and finally that
(Dy|ik8/9t — HID)) =0 ' (11)
holds [16].
In this work we shall calculate the expectation values
{(x1x} (xlafanlx) (x1Bilx) {x1Balx} (xXlg=lx)  (12)

and compare their numerical values for (H/J)| Dy} and the error |3} to obtzin a feeling of
the errors introduced by the approximate nature of the |D,} ansarz. Note that, in contrast
with the usually applied procedure, we do nor eliminate terms in the equations of motion
which are products of a site-independent constant multiplied by &, as a phase factor at the
a-values. In appendix ! we give some commutation relations and expectation values of
various operators which are necessary to derive the expressions for the values listed above.
First of all we shall compute projections of the state |x) on our non-orthogonal basis
states: :
%) = & 10| Bas1} In) = @710}l B,) In7) = &f 10Vel Bu-1)

|n, k) = a5 10).0,5;5 10},

->xy=Y (mn+1 27) = Yulny = @ualn™y = D ctueln, k))- (13)
- k
From this we easily obtain the projections

(n+1X) = Xns+1 ~ Vn Opgrn — Gp-1Dng1p—1 — Zank(b;.g.],g - b;k)Dn—i-l,n
k

{(nlx) = XAn41Dpnit ~ ¥ — Anoy Dppi

- 14
{n”|x} = 2841 Dpingt = VuDaoin — Gpq — Zani:(b*_m - b;k)Dn—[,n (14)
k

n, kix) = XAns1Bns1k — brg) Dppst — @n—1(On-1.4 — bnic) Dnmy — i
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The norm of our state can be computed using the expectation values given in appendix I:

{x|x)= Z [2 Re( - -xa:+1an—an+1.n—l = ¥u (xa:-g-; Dupin —ap 1 Dpoyp)

n

+ Zﬁ'nk (b:—l.k - b;k)Dn—l.na*_l - Zank(b;ﬂ,,t - b;k)Dn-!-l.na:-q-l)
k k

+ lans11? + @n-t P + [al* + Z!anklz]- (15)
k

A pumerical comparison of the norm of our two states will give us an idea of how important
the error made by the ansatz in comparison with (ﬁ /D) will be. Further we are
interested in the expectation value of the number operator for the amide-I oscillators in the
two states under investigation. This value can be computed with the formula

(xiﬁf.'&nlx} = xa:+| (xan+l — VuDppin — @1 Dugrn—1 — Zank(b;.;.i,k - ;k)Dn-H.u)
k

- J’,: (x8nit Dy i — ¥ = @u—1Dyn-1)
* & »

—a;_ (xa,,+;D st = VaDuorn — Gnoy — 3 @By, — ) D _l.,.)

k

— 3 o lrags 1 (Busr s — but) Dt — GnotBu-t. — ) Dt — ],

k

(16)

By rearranging the different terms, one ¢an easily show that this expectation value is a real
-quantity as one expects. The numerical evaluation of this expectation value gives an idea
of how large the errors in |a,(t){*> when calculated with the |D,) approximation might be.
The expectation values of the phonon annihilation operators are given by

(X!Bkbf) = Z {xa;+[ [an-l-l.kan-l-l = bk Dpi1n¥n — Bp1,kBnit =181

"
- (ank + Z“nk’ (h:.{.].k' - b;,v)bnk) Dr}+l.n]
kf
- V:(an+l.an.n+lan+l — Bup¥n = b1k D pn18n1 = Oing)

—a,_14 [an+:.kD —tn+1@n+1 = Buk Duetn¥n — Bp1,48n-1

- (ank - Z“ﬂk’(b:..;.k' - b:f)bnk) Dﬂ—l.n]
k’

- Z X (Bpi1 k0 = Bu on gtk Dt 1B
k?

— (Bn—te = bugYon-1 4 Dpnr@n_q — mrcank']}- (17)
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To check our formula for errors we derived independently the corresponding expression for
the expectation values of the phonon creation operators and verified that

(x1Belx) = (1B 1x)” (18)

holds. From this we can finally compute the expectation values of momentum and
displacement operators in our states:

(X1gnlx} = 3 V(2] M )Uni Re((x1belx))
k

) (19)
x1Balx) = Y VIRMagUn In((x [t X))
k

For comparison we give in appendix 2 the corresponding expressions for the simpler | D2}
approximation, in which the lattice is treated classically. In section 3 we discuss numerical
applications of these results.

3. Results and discussion

3.1, The | D) approximation

We have calculated numerically the above-derived expectation values and projections for
four pairs of (X, W) values, namely (X = S0 pN, W = 10 N m™Y, (X = 150 pN,
W=10Nm™"), (X =50pN, W =50 Nm™") and (X = 150 pN, W = 50 N m~!).
Since the numerical results were in all cases essentially similar, concerning the comparison
between expectation values in the state (H /) Dh} and the deviation |8}, we concentrate the
discussion on one of the parameter values. We have chosen X = 150pNand W = i0Nm™!
since in this case a travelling soliton is present in the system which starts to disperse after
reflection at the chain end, as figure 2 shows, where we present the time evolution of
l@.(£)]?, the lattice displacements g,{¢) and the lattice momenta p,(1).

B lev ps/h]
.095 3

Figure 2. Dynamics of a chain of 25 units after an
initial one-site excitation at site 24 using the | Dy} ansatz
state. The following quantities are shown as functions
of time ¢ and site » (time step 1 fs; error in total energy
less than 30 peV; norm error less than 4 ppb): (a)
lan N2 B) pul®) (€V ps A1Y; (€) gnlt) (A).
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Figure 3. Time evolution of {¢) the norm N of the state (.F?/J}lDl) (N1) and (b) the norm of
the deviation |8} (M2).

" Figures 3(a) and 3(b) show the norm N; of the state (ﬁ/.i)iD[} and the norm N of
the deviation |3), respectively. It is clear from the figure that the norm of the deviation
is completely negligibie, being five orders of magnitude smaller than that of (H/J)|Dh).
Also the norm of the deviation shows no tendency to increase with time but has a strongly
oscillatory character. Figure 4 shows the expectation values discussed above for the two
states. Figure 4(a) shows the expectation values of the number operators for the amide-
I oscillators as functions of site and time. Also here the values for the deviation are
negligible compared with those for (K /J}|Dy). In this case they are roughly four orders of
magnitude smaller. Both expectation values have the same form as the time evolution of the
expectation values of the number operators in the |D;) state itseif. The same observation
holds for the expectation values of the phonon annihilation operators (real part in figure 4(b),
and imaginary part in figure 4(c)). However, in this case the difference is even larger,
namely five orders of magnitude, In ‘the case of the expectation value of the momentum
operators the. difference is again smaller by four orders of magnitude (figure 4(d)), and
for the displacement operators (figure 4{¢)) by five orders of magnitude. Thus it seems
that the deviations of the |D,} state which result from exact solution of the time-dependent
Schridinger equation are in terms of the expectation values of the different relevant operators
in the two states on the right-hand side of

i(h/J)(3/81)| D) = (H/)ID1) + |8) (20)

not large and are in fact negligible, being for-|8) four to five orders of magnitude smaller
than for the state (H /J)|D1}. Although this is not a direct measure of the errors introduced
into the corresponding expectation values of the wavefunction itself, it gives at least some
confidence in the numerical resuits of (D) dynamics. Note that the absolute values of the
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expectation values formed with the deviation state can be obtained by multiplication by
J* =935 x 1077 eV?, since the deviation from the Schridinger equation is J/|3). In our
calculations we have used }§) and (H /) Dy} in order to obtain dimensionless states.

Now we tutn to the projections of the two states on the right-hand side of equation (20}
on the different basis states in their expansions. It is easy to verify that (2|5} = 0 holds; thus
it is also not necessary to discuss {n|(H/J )[D;) since our state is exact in this direction.
For completeness we show the real and imaginary parts of {(#|(H/J)| D)) in figure 5(@). In
figures 5(b) and 5(¢) we show the real and imaginary parts, respectively, of the projections
of our two states on |n™}. We recognize immediately that in these directions the deviation
is two orders of magnitude smaller than the amplitudes of (H/J){ D). The sitnations for
the projections in the in"‘} direction are very similar, as figures 5(d) and 5(e) show. One
sees that, while (n*](H [J) D} is large when the amide-I excitation probability is larpe,
the deviation spreads over the whole chain, however, being also more pronounced at the
amide-] excitation sites. We give only two examples of the huge amount of data for the
projections on the |r, k) basis states. In figure 5(f) we show the real part of the projection
in the direction |, 1) where &£ = 1 denotes the lowest non-zero phonon frequency. We
see that in this case the deviation can be even twice the projection of (H /DY Dy in this
direction. However, in absolute values both contributions are three orders of magnitude
smaller than those of the previously discussed directions and thus entirely negligible. For
all higher phonon frequencies the errors are typically smaller by factors between 2 and 10
than the projections of (H [ Dy}; however, also there the latter are small enough to be
negligible. As an example we show the real part of the projections in the |n, 5} direction
in figure 5(g). Thus altogether it seems that the deviation of the |.D)-state solutions fulfil
the time-dependent Schridinger equation to quite good accuracy. In directions where the
deviations are relatively large the whole contribution is negligibly small compared with
the contributions in other directions. Also here the projections have to be multiplied by
J =9.67 x 10~* eV, since the deviation from the Schridinger equation is J|5). Further the
deviation evolves proportional to / from the smali-polaron limit {/ = 0) where the [D))
ansatz gives the exact solution.

3.2. The |\ D2} approximation

The equations of motion as well as the necessary expectation values for the error are
derived in appendix 2. An interesting and, to our knowledge, never reported feature of the
|D2) model is the extreme dependence of the soliton stability on the boundary conditions.
If one uses free chain ends instead of the commonly applied fixed (i.e. a1, an, 1, g,
p1 and py are not ailowed to change during the simulation) or cyclic ends, the soliton
stability window conceming the parameter X is drastically reduced, as figure 6 shows.
While traveiling solitons appear roughly between X = 30 pN and X = 80 pN for a fixed
boundary, travelling solitons show up only from X = 60 pN for the free boundary (with

= 10 N m~") and aiready from X = 80 pN the excitation becomes pirned at the chain
end.

Since in the case of the [D;) state the basis space is smaller than for the {D)) state,
one would expect the deviations from the Schrodinger equation to be larger. However,
also here this deviation is minimized by the time-dependent variational principle, which
is compietely equivaient to the Lagrangian method used in appendix 2 for derivation of
the equations of motion. Therefore the difference between the expectation values of the
operators in the states (H /J)|D4) and |A) (see appendix 2} is indeed mostly smaller than
in the states (H /J} D) and |8}, but it is not as pronounced as one would expect. Also
the expectation values formed with |A} are themselves larger than those discussed above,
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Figure 4. Expectation values of several operators in the state (H /) Dt} (denoted by D) and
in the deviation |8} (denoted by E): (2) number operators AD(t) and AE(s) for the amide-
} oscillators as functions of site # and time f; (b) phonon arnihifation operators (real parts
BP(r) and BE(r)) as functions of wavenumber k and time #; (c) phonon annihilation operators
(imaginary parts C(t) and CE(¢)) as functions of wavenumber £ and time f; (¢) momentum
operators pP(¢) and pEie) as functions of site # and time £ (e) displacement operators gP(r)
and gF(¢) as functions of sitz # and time !.
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Figure 5. Projections of the two states under consideration onto different basis functions D again
denotes the state (H/J)|Ds) and E the deviation |8} as functions of sitz and time (| D)) state):
{2} seal part ROP(¢) and imaginary part 102ty of (nlH /2N D1 (note that here {818} = 0
hoids), (&) real parts of (m=[A /DDy (EP (1)) and (™18} (Ef(r}); {¢) imaginary parts of
(nHH/D|D1) (FP()) and (a718) (FE(); (d) real parts of (n*{(H /J)D1) (GP()) and
{n*15) (GR()); (e) imaginary parts of (n*|(H/)1D1} (HP (@) and (n*18) (HEWO); (f) real
parts of {n, 1|H/J1D\} (I2(0)) and (n, 118) (1E()); (g} real parts of (n, 5|4 /7| Dy} G20
and {n. 515y (JE).
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Figure 5. (Continued)

eg1t)

fa,(e)

Figure 6. Time evolution of |aq(7)[? as 2 function of
site » from an initial one-site excitation at site 24 in a
chain of 25 units at 7 = 0 K (W = 10 N m™'} using
the [ D2} model and free boundaries for (@) X = 50 pN,
(& X =60 pN and (¢} X = 80 pN.

but the difference is not tremendous (see below). One recognizes two differences between
{Dh} and [D,) immediately from the expressions in appendix 2. First of all the deviation
state for the |D;) model is not proportional to J, as it is in the {D;) case, and thus }Dy)
is not exact in the smali-polaron limit (/ = 0). Further the projection in the direction
Iny = &10)|B) vanishes as in the |Dy) case but the additional deviations in the directions
InEY = G, [0Ve | Br1 } naturally cannot eccur in |D;} theory because such basis states are not
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Figare 7. Time evolution of (a) the norm N, of the state (H/J)| Dz} and (b} the norm Nz of
the deviation |A). The parameters are W = 13 N-m~!, and X =62 p,

present there.

In figure 7 we show for the |D3) states the norms (Dzl(ﬁ /)| D) and {A|A) for the
usually used parameter values W = 13 Nm~! and X = 62 pN and free-boundary conditions.
From the figure we see that the two curves are nearly paraliel and that the norm of the
deviation is larger by a factor of about 3 than in the {D;). case. While the nom of
(H/J)|Dy) spreads over a region of 110, the norm of (H/J)|D,) spreads over a region
of roughly 5. This means that in the latter case the variation in the norm with time is
completely governed by the time variation in the deviation which is by far not the case for
the |D,;) state, Therefore already from these norms we can deduce that the time variation
in {Dy} is much more accurate than that of {D,).

In figure 8(a) we show the expectation values of the number operators of the amide-I
oscillators in our two states. Although the deviation is somewhat larger than in the |Dy)
case, this difference is not significant. This result is to be expected, because the deviation
state in the | D2} case has no coefficients on the basis states |#}. For the momentum operators
(figure 8(b)) the deviations are larger by a factor of 2 than in the |D;) model, while in the
case of the displacement operators they are of the same order of magnitude, but here the
expectation values of the operators formed with the (H/J)| D2} state are much smaller
than those formed with the (!;' /Y Dh) state and thus the errors in the | D;} case are more
significant, although still small. The reason that the deviations in the |D,) model are also
small is that they are minimized by the time-dependent variational principie also in this
case. However, this must lead to results which differ from those of |D;), because in the
|D7) case the basis space is much smaller.
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Figure 8. Expectation values of several operators in the state (A7) D7) (denoted by D), and in
the deviation |A) (denoted by E), computed in the | Dz) model (W = I3 N m ;X =62 pN) (@)
number operators AD(r) and AE(e) for the amide-1 oscillators as functions of site n and time ¢;
{b) momentum operators p2(¢) and pE(s) as functions of site # and time # (c) displacement
operators gP(r) and gE(r) as functions of site # and time .

4. Conclusion

We have numerically determined different expectation values formed with the (!? /DY
state and 14), which is the deviation from the exact solutign of the time-dependent
Schrodinger equation, i.e. for our approximation [i#(3/3¢) — H]|D;) = J|8} holds, We
found that, for all the expectation values that we computed, including the norm of the
two states, those formed with |3} are completely negligible compared with those formed
with (H/J){D1). Although this is not a direct measure of the comresponding errors in
the expectation values of operators formed with the |D;) state, it gives at least an idea
of the importance of the deviation. Thus we conclude that the |D;} ansatz should give a
relatively good approximation to the exact solutions, specifically since it is the exact solution
in the small polaron limit {J = 0). This is not the case for the | D2} ansatz, although the
corresponding deviation there also results in rather small expectation values. Therefore
it is clear that the basis space in the |Ds) case is too limited and one has to conclude
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that here the time-dependent variational principle must result in solutions which are even
qualitatively different from the exact solutions in order to minimize the deviation, since the
small-polaron limit is also not reproduced. On the other hand the extended basis space of the
|3y} state is sufficient to reproduce the small-polaron limit, which leads to the conclusion
that solutions other than f = 0 have to be at least qualitatively correct. This conclusion is
supported by the numerical results from the deviation state in this case. Further the error
evolves proportional to J from the exact small-polaron case and the actual value of J is
small (0.967 meV). Also projections of the deviation in the directions of the basis states
are negligible for all basis states which have a large contribution in (];' /YD), while only
for basis states which are already negligible in (/7 /J){Dy) is the error comparable with the
contribution in (H/J)|Dy).

However, it is desirable to have a better ansafz state than |D;}. Comparison of the
results obtained with such a state with [Dy) results would give final justification for the use
of the |D,) approximation. In appendix 3, on the basis of the considerations of Mechtly and
Shaw [15], we outline a strategy of how one ¢an cobtain such an improved ansarz. Work
along this line is in progress in our laboratory.
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Appendix 1. Commutation relations and expectation values

The well known commutation relations for boson operators are
5&5;: = 52:6;; + S (AL.l)
From this, one can easily show by complete induction that

b (5™ = (B Y by + m(by"

o o . (A1.2)
b ()™ = (bi)"b —mb)™ .

Further we have for the displacement operators

O = exp(b,,kl;:' — b by = exp(—3 Libue!® exp(b,,kb"') exp(—bybi). (AL3)

As an example of how to proceed we compute two of the necessary commutators:

by Ui = exp(—$1bm1?) Z ""m B)” exp(—by,bi)
v=0 v!
b 2y S0 Pk iyt o S Pk e h
exp(—1 (B | )( > -frv(bj)"’ + ; —l—:‘!—(bf )vb;,) exp(—bpnby)

v=i

o0 U—

exp(_ljlbnk|2)( Z I)' G+ exp(bntﬁ,f')ﬁk) exp(—bbr)
=1

fl

= exp(—5lhu/?) exp(buih;y exp(—bpg % By) (bt + bi) = DBy + b,
(Al4)
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Thus we obtain finally that
b0, = Un(br + b (AL5)
In complete analogy we calculate '

) Lip 2 o f o (;b:g)v (- b‘}) v= 5!
b O = exe(=Hiou Py explbniy) 3 55 b 92

v=0
= OB + %) - (A1.6)

and thus '

5{ Uy = 0a(Bf + b} (ALD
From this all the necessary expressions can be easily obtained:

by Oy = Un(Br + bu) b0y = Oa (B + b))

Unbr = (b = bui) U 0.5 = (6§ - b3)Un ALS)

06 = (b +b5)0;F by = by + b U _

BrOF = UGB! - b2 b O} = U (b ~ bui).
‘With the help of these expressions and of
{BulbiBm) = bk D Bl 1Bn) = B4 Do (A1L9)

we can compute the following expectation values which are needed for the calculations
described in the main text:

Bl 0B 10)p = By — 1) Den = GlOIBUT 18n))* (AL10)
(BB Unbt 000 = [8k + (Bl = Pt Yorni 1 P

(Al.11)
(.Bnlb+ mb ‘0}11 = (b:,tr bmk')b;k Dy
p{ol?k‘ [f:?z-lﬁm) = [y + ,(bmlk’ - nk‘)b k]Dnm (AL12)
p(olbk'U+bkiﬂm) = (bmk’ - bnk')bmk Dnm
o015 U, 5710), = 8 (AL13)
o {018y U B, 0,b110Yp = bucbirir = G{O1BR U 67 Unb}10)p). (A1.14)

To demonstrate the way in which to compute these expectation values we shall give just
two examples:

o (OlBe OB 1B) = 01T Bre ~ Buie)B 1B} = (Balbichyf 1B — (Bul B 1B onie
= (Buloui + B Bl Brd — BB Dum = [Biie + (ot — b )b ) Dn (ALL15)
0BT i1} = p (O U 1BYomi = p{OIT; (Ber — Brge) B Yome

= {Bulbi 1B bme — (Br|Prm)bricbmk = (Bmkr ~ bt )bmi Dy (AL.16)
Besides the commutation rules, for these calculations one has to use the fact that the coherent
states are eigenfunctions of the annihilation operator:

BlBa) = bmlBny  (Bulby = (Balb)y. (ALIT)
Finally we use that ,
&n& =g an + S —> e(olan&;lo)e = dum e(oi&n&+é¢&;|0)e = 8pi i (A1.18)
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Appendix 2. Expressions for the | I3;) approximation

For comparison we wish to derive the error in the simpler D2} ansazz, in which the lattice
is described classically. The ansatz is given by

1Dz} =) an(0)} 10l B

R i (A2.1)
[B} = Ul0)p = exp (Z{bk(t)bf - bI(t)bk]) 0.

k

We see that here the manifold of basis states |8,) for the description of the lattice
displacements is reduced to a single basis state |8). With a straightforward derivation
we obtain

L = 3ih{{D21(3/31) D2) — ((3/31) D2| D))
= §ih [ > (dnay — and}) + (E | F) PCT A bkiv;:)]. (A22)
n n k

Together with the expectation value of the Hamiltonian this gives the Lagrange function
L=L,—(Da\H|D2) = Jih ) (8nay — @ai}) + §ih ) lan (i} — bi5})
n nk

— 3 [Eolanl — Ja}(@ns1 +any) — Y hllbel® + § + Bax (be + b} lan .
n nk

(A2.3)
The Euler-Lagrange equations for a, lead to
iha, = (Eo + %Zhwk)a,, ~ 3ih Y _(bib} — beb})an
k k
= J (@41 + @n1) + ) Ry llbel? + Bue(by + b)), (A2.4)
k

From this, one can show that the norm is conserved, i.e.
d
3 2l =03 la®f =3 e =0F =1. (A2.5)
[ n n

With (A2.5) and the Euler-Lagrange equations for the b-values we obtain the equations of
motion

by = howy (bg + 3 Bulay 12) (A2.6)

which can be shown to be equivalent to the more familiar equations

Pr = W(gns1 = 24n + gn-1) + X (|l = |an-1[?). (A2.7)
This leads to the final equations for the g-values:

ifidy = (Eu+ : Zhwk)a,, —J @i+ an-1)+ Y hey (,3,,JE -1y Bmk[a,,,[z) (B} + be)an
1 k m

(A2.8)
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equivalent to

iha, = (Eo+§Zhwk)a,w-fcam+an_l)+X(qn+l —@n)a,—3X Y 180Gt~ dm)Gn-
k . m
{A2.9)

With the gauge transformation

i ! ’ I L
an{t) = Ap(2) exp { E[ - (EO + % ;hwk)r"i“ %X ;L 1@ () 1 Gm+1 (") — gm ()] 2 ]}
(A2.10)
this can be transformed into the familiar form
hA, = —J{(Apt1 + Apo1) + X{gut1 — qn) An- (A2.11)
Note that, with Davydov’s method for the derivation of the equations of motion (treating
(Dz|H |D,} as the classical Hamiltonian function), equation (A2.11) is obtained; however,
the second term in the phase in equation (A2.10) is missing. Now again we can compute
if(d/01)] D7) and 4 D4} separately and we obtain
H(3/01)| Da) = JICH/ T} D2} + |M)]- (A2.12)

We introduce the state

1X) =3 valn) + D ctuln, )
n nk

M =N Im k)= IOLOGHO) (42.13)
(nim} = Sum (nim, k) =0 {n, kim, k'Y = Spbisr.
We obtain |y} = |A} if we set
Y= 0
' (A2.14)
Qyjy = — (Z ]am] By — nk) ay
and further |x} = (H/J)|Ds) if we set
1 | | '
=7 Zn: [(50 + ;hwk[]bka + 5+ Bu(b} + bk)])ﬂn — J(apys + an—l):l A215)

Oy = (Reog /S )by + Bpi)ay-

The projections on the basis states are, because of their orthogonality in this case, simpiy

(nlx) = ¥ {n, klx} = o (A2.16)
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and our expectation values are
{xlx} = }j Ival® + Z ot 12

(X187 8alx) = yal® + Z |t

x1Belx) = Zy;(m +om) +be Y lee |2 = ((x157 1x))"

o (A2.17)
{xlgalx) = \/-

(X|Palx) = JMM Z@Unk Im({xx1x)).
k

Appendix 3. Improved ansatz including two-phonon terms

Mechtly and Shaw [15] have shown that the exact solution [(z)} of the Schrédinger
equation can be written in the form

W) = Y an(t)aT 10} Wa 0}, (A3.1)
where
ﬁ’n = exp §,,. (A3.2)

The anti-Hermitian generator §,, can be expanded into an infinite series of normal ordered

products of arbitrary numbers of phonon creation and annihilation operators multiplied by
time-dependent coefficients:

S0ty =D 1bu()bY — BB = Y frwn (b} i
[ k&'
+3 2 I8 alOBF B} — gl (OBBE1+ . ... (A3.3)
RE'

We see that a truncation of the series after the first term leads to the |D;) state. In this first
term it is taken into account that an amide-I excitation at unit # can create or annihilate
a phonon of the normal mode 4. However, the normal modes remain uncoupled since
only one-phonon processes are included. In the second sum it is taken into account that
a phonon with wavenumber £’ can be annihilated by the creation of another phonon with
wavenumber k, while the third sum describes the simultaneous creation or annihilation of
two phonons with wavenumber k and &'. The higher-order terms then include three-phonon
processes, four-phonon processes, and so on. The convergence of the series can probably
be investigated only numerically.

In a first attempt to study this convergence and to improve the quality of the ansatz
beyond |D;} we are planning to take the two two-phonon processes into account. For this
purpose we have to derive the Lagrangian

g+ a
= (Y {2)| %m~37 - Hiy () (A3.4)
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from which with the help of the Euler—Lagrange equations
(d/dr)(3L/3¢,) ~ aLfdg, =0 @u = Gn Bots fron OF Guien (A3.5)

the 2N% + N2 + N complex equations of motion can be obtained and solved numerically.
Work along this line is in progress in our laboratory and the results will be the subject of a
future paper.

However, one should also still seek temperature modeis which Jead to quantitatively
more reliable results than the average Hamiltopian model, although the latter model is
qualitatively correct [5]. For this purpose, one could start with the usual initial state

— — — o — _l____ 20 T
Yot =) = Zja,,(r = 0)&;710e|v) v = U m(’”‘ )*10p (A3.6)

where v denotes one of the possible phonon distributions in the lattice. Then at time ¢ the
exact state is given by

[, (th = exp[—(i/?z)ﬁt]hﬁ,,(t = 0)}. ' (A3.7)

The expectation value of an operator A, where in our case the exciton pumber operators and
phonon and exciton annihilation operators are of interest, computed for our state is given
as

Aut) = (Y@ AILO)) = (. (t = 0)] expl(i/m) Ht1A expl(=i/m H1liv (t = 0)). (A3.8)

A thermal average finally gives the expectation value at time ¢ and temperatune T

A A
AB =) p A py=(vlexp ("K;T) [v) / Y lulexp (—,{B—;) lny  (A3.9)
v [

where ﬁp is the phonon part of the Davydov Hamiltonian. Expansion of the exponentials
results in the final equation

k+I(__l)!

40 = 3 3 L e = O AR e = O (a3.10)

Thus one has to compute commutators of the kind
[A, H] [A, . (A3.11)

It is hoped that a closed form for the expressions can be found or, if this is not possible,
the expansion of the exponentials can be truncated after a suitable number of terms. Work
along these lines is in progress in our laboratary.
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